An adaptive grid method for two-dimensional viscous flows
نویسندگان
چکیده
This paper extends the gas-kinetic BGK-NS scheme to an adaptive grid for the viscous flow simulations. The grid movement and adaptation is controlled by a monitor function which may depend on velocity gradient or other flow variables, such as density or pressure. For the viscous flow computation, the use of adaptive mesh much improves the efficiency and accuracy of the method in comparison with the methods with static mesh points. The current method is an accurate and efficient method for the viscous flow computation, where the grid points can be easily moved and concentrated on the regions with large velocity and density gradients, such as the boundary layer and multi-material interface. Many numerical examples validate the current approach for the viscous flow simulations. 2006 Elsevier Inc. All rights reserved. MSC: 65M06; 76P05; 76T05
منابع مشابه
Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows
Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...
متن کاملCombination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows
Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roes flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, acc...
متن کاملAdaptive Solution of Steady Two Dimensional Flow on an Unstructured Grid
Two-dimensional Euler equations have been solved on an unstructured grid. An upwind finite volume scheme, based on Roe's flux difference splitting method, is used to discretize the equations. Using advancing front method, an initial Delaunay triangulation has been made. The adaptation procedure involves mesh enrichment coarsening in regions of flow with high low gradients of flow properties, ac...
متن کاملAdaptation of Structured Grid for Supersonic and Transonic Flows
Two distinct redistribution grids - adaptation techniques, spring analogy and elliptic grid generator are applied to two-dimensional steady, inviscid, shocked flows, and the ability of each technique is examined and compared. Euler equations are solved base on Roe's Reimann solver approach to simulate supersonic flow around a sphere, transonic flow about an airfoil and supersonic flow in a symm...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 218 شماره
صفحات -
تاریخ انتشار 2006